нелинейной системы. Более простые аппроксимации используются для анализа свойств модели, более сложные — служат для построения программ управления, которые могут использоваться в качестве начального приближения в алгоритмах улучшения.

Алгоритмы МНК и построения полной нелинейной модели и линейной модели реализованы средствами программ символьных вычислений. В дальнейшем планируется перенос этих алгоритмов на параллельную архитектуру. Также на основе полученной линейной модели будет решена задача определения границ опасной зоны посадки вертолета.

ЛИТЕРАТУРА

- 1. *Кротов В.Ф., Букреев В.З., Гурман В.И*. Новые методы вариационного исчисления в динамике полета. М.: Машиностроение, 1969.
- 2. Ухин М.Ю. Приближенный синтез оптимального управления. М.: Физматлит, 2006.

Блинов Александр Олегович Институт Программных Систем Российской академии наук Россия, Переславль-Залесский e-mail: sarmat@pereslavl.ru

Поступила в редакцию 10 мая 2007 г.

НЕКОТОРЫЕ ВОПРОСЫ ФУНКЦИОНАЛЬНО-ДИФФЕРЕНЦИАЛЬНЫХ ВКЛЮЧЕНИЙ С ИМПУЛЬСНЫМИ ВОЗДЕЙСТВИЯМИ 1

© А.И. Булгаков, А.И. Коробко, О.В. Филиппова

В докладе рассматривается функционально-дифференциальное включение с импульсными воздействиями в конечном числе фиксированных точек. Изучаются свойства решений таких включений. Отметим, что дифференциальные и функционально-дифференциальные уравнения с импульсными воздействиями были исследованы в монографиях [1–3].

Пусть $\mathcal{U} \subset [a,b]$ измеримое по Лебегу множество $\mu(\mathcal{U}) > 0$, где μ — мера Лебега. Обозначим $L^n(\mathcal{U})$ пространство суммируемых функций $z:\mathcal{U} \to \mathbb{R}^n$ с нормой $||z||_{L^n(\mathcal{U})} = \int\limits_{\mathcal{U}} |z(s)| ds;$ $\rho_{L^n(\mathcal{U})}[\cdot,\cdot],\ h_{L^n(\mathcal{U})}[\cdot,\cdot]$ — расстояние от точки до множества и расстояние по Хаусдорфу между множествами в пространстве суммируемых функций, соответственно; $L^1_+(\mathcal{U})$ — множество неотрицательных функций пространства $L^1(\mathcal{U})$. Пусть $M \subset L^n(\mathcal{U})$. Обозначим $\overline{\operatorname{co}} M$ выпуклую замкнутую оболочку множества M, а через $\overline{\operatorname{ext}}(\overline{\operatorname{co}} M)$ замыкание множеств крайних точек выпуклой оболочки $\overline{\operatorname{co}} M$.

¹Работа выполнена при поддержке РФФИ (проект № 07-01-00305) и темплана № 1.6.07.

Будем говорить, что множество $\Phi \subset L^n[a,b]$ выпукло по переключению (разложимо), если для любых $x,y \in \Phi$ и любого измеримого множества $e \subset [a,b]$ выполняется включение $\chi_{(e)}x + \chi_{([a,b]\backslash e)}y \in \Phi$, где $\chi_{(\cdot)}$ — характеристическая функция соответствующих множеств. Множество всех ограниченных замкнутых выпуклых по переключению подмножеств пространства $L^n[a,b]$ обозначим через $\mathbf{S}(L^n[a,b])$. Через $\Omega(\mathbf{S}(L^n[a,b]))$ обозначим множество всех выпуклых ограниченных замкнутых выпуклых по переключению подмножеств пространства $L^n[a,b]$.

Пусть $t_k \in [a,b]$ $(a < t_1 < ... < t_m < b)$ — конечный набор точек. Обозначим через $\widetilde{C}^n[a,b]$ множество всех непрерывных на каждом из интервалов $[a,t_1],\ (t_1,t_2],\ ...\ ,\ (t_m,b]$ ограниченных функций $x:[a,b] \to \mathbb{R}^n$, имеющих пределы справа в точках $t_k,\ k=1,2,...,m$, с нормой $\|x\|_{\widetilde{C}^n[a,b]} = \sup\{|x(t)|:t\in [a,b]\},\ \widetilde{C}^1_+[a,b]$ — множество неотрицательных функций пространства $\widetilde{C}^1[a,b]$.

Рассмотрим задачу

$$\dot{x} \in \Phi(x),\tag{1}$$

$$\Delta x(t_k) = I_k(x(t_k)), \ k = 1, \dots, m, \tag{2}$$

$$x(a) = x_0, (3)$$

где отображение $\Phi: \widetilde{C}^n[a,b] \to \mathbf{S}(L^n[a,b])$ полунепрерывно снизу и для каждого ограниченного множества $\mathbf{U} \subset \widetilde{C}^n[a,b]$ образ $\Phi(\mathbf{U})$ ограничен суммируемой функцией, отображения $I_k: \mathbb{R}^n \to \mathbb{R}^n, \ k=1,2,...,m$, непрерывны, $\Delta x(t_k) = x(t_k+0) - x(t_k)$.

Под решением задачи (1) – (3) будем понимать функцию $x \in \widetilde{C}^n[a,b]$, для которой существует отображение $q \in \Phi(x)$, что функция $x : [a,b] \to \mathbb{R}^n$ представима в виде

$$x(t) = \int_{a}^{t} q(s)ds + x_0 + \sum_{k=1}^{m} \chi_{[t_k, b]}(t)\Delta x(t_k), \tag{4}$$

где $\Delta x(t_k)$, k = 1, ..., m, удовлетворяют равенствам (2).

В докладе для задачи (1)-(3) с вольтерровым по А. Н. Тихонову отображением $\Phi:\widetilde{C}^n[a,b]\to \mathbf{S}(L^n[a,b])$ обсуждаются вопросы о локальной разрешимости, продолжаемости решений, и изучаются некоторые их свойства.

Далее приведем некоторые результаты.

Пусть $H(x_0, \tau)$ — множество всех решений задачи (1) – (3) на отрезке $[a, \tau]$ ($\tau \in (a, b]$).

Будем говорить, что множество всех локальных решений задачи (1) – (3) априорно ограничено, если найдется такое число r>0, что для всякого $\tau\in(a,b]$ не существует решения $y\in H(x_0,\tau)$, для которого выполняется неравенство $||y||_{\widetilde{C}^n[a,\tau]}>r$.

Будем говорить, что множество решений задачи (1)-(3) почти реализует расстояние в пространстве суммируемых функций от любой суммируемой функции до своих значений, если для любого $v \in L_1^n[a,b]$ и любого $\varepsilon > 0$ существует такое решение $x \in \widetilde{C}^n[a,b]$ задачи (1)-(3), что для любого измеримого множества $\mathcal{U} \subset [a,b]$ выполняется неравенство

$$||q - v||_{L^n(\mathcal{U})} \le \rho_{L^n(\mathcal{U})}[v, \Phi(x)] + \varepsilon \mu(\mathcal{U}),$$
 (5)

где функция $q \in \Phi(x)$ удовлетворяет равенству (4). Если неравенство (5) выполняется и при $\varepsilon = 0$, то будем говорить, что множество решений задачи (1) – (3) реализует расстояние в пространстве суммируемых функций от любой суммируемой функции до своих значений.

Т е о р е м а 1. Пусть множество всех локальных решений задачи (1)-(3) априорно ограничено. И пусть отображение $\Phi: \widetilde{C}^n[a,b] \to \mathbf{S}[L^n[a,b]]$ непрерывно по Хаусдорфу. Тогда множество решений задачи (1)-(3) почти реализует расстояние в пространстве суммируемых функций от любой суммируемой функции до своих значений. Если

 $\Phi: \widetilde{C}^n[a,b] \to \Omega(\mathbf{S}[L^n[a,b]]),$ то множество решений задачи (1)-(3) реализует расстояние в пространстве суммируемых функций от любой суммируемой функции до своих значений.

Будем говорить, что импульсные воздействия $I_k: \mathbb{R}^n \to \mathbb{R}^n, \ k=1,2,...,m$, обладают свойством A, если для каждого k=1,2,...,m, найдется непрерывная функция $\widetilde{I}_k: \mathbb{R}^1_+ \to \mathbb{R}^1_+$, удовлетворяющая равенству $\widetilde{I}_k(0)=0$, что для любых $x,y\in\mathbb{R}^n$ выполняется оценка

$$|I_k(x) - I_k(y)| \leqslant \widetilde{I}_k(|x - y|). \tag{6}$$

Будем говорить, что импульсные воздействия $I_k: \mathbb{R}^n \to \mathbb{R}^n, \ k=1,2,...,m,$ и отображение $\Phi: \widetilde{C}^n[a,b] \to \mathbf{S}[L^n[a,b]]$ обладают свойством $(\Gamma^{u,\varepsilon,p}; \widetilde{I}_k, k=1,2,...,m),$ если импульсные воздействия $I_k, \ k=1,2,...,m,$ обладают свойством A и если найдется изотонный непрерывный вольтерров оператор $\Gamma: \widetilde{C}^1_+[a,b] \to L^1_+[a,b],$ удовлетворяющий условиям: $\Gamma(0)=0,$ для любых функций $x,y\in \widetilde{C}^n[a,b]$ и любого измеримого множества $\mathcal{U}\subset [a,b]$ выполняется неравенство

$$h_{L^n(\mathcal{U})}[\Phi(x); \Phi(y)] \leqslant ||\Gamma(Z(x-y))||_{L^1(\mathcal{U})};$$

множество всех локальных решений задачи

$$\dot{y} = u + \varepsilon + \Gamma(y), \quad \Delta y(t_k) = \tilde{I}_k(y(t_k)), \quad k = 1, 2, ..., m, \quad y(a) = p$$
 (7)

априорно ограничено. Здесь непрерывное отображение $Z: \widetilde{C}^n[a,b] \to \widetilde{C}^1_+[a,b]$ определено равенством (Zx)(t) = |x(t)|, отображение $\widetilde{I}_k: \mathbb{R}^1_+ \to \mathbb{R}^1_+, \ k=1,2,\ldots,m$, удовлетворяет неравенству (6), $u \in L^1_+[a,b]$, числа $\varepsilon, p \geqslant 0$.

Пусть для функции $y\in \widetilde{C}^n[a,b]$ существует функция $\widetilde{q}\in L^n[a,b]$, что для любого $t\in [a,b]$ имеет место представление

$$y(t) = \int_{a}^{t} \widetilde{q}(s)ds + y(a) + \sum_{k=1}^{m} \chi_{[t_k, b]}(t)\Delta y(t_k), \tag{8}$$

где $\Delta y(t_k), k = 1, 2, ..., m$ удовлетворяет равенству (2). Пусть для функции $\varkappa \in L^1_+[a, b]$ для каждого измеримого множества $\mathcal{U} \subset [a, b]$ справедливо соотношение

$$\rho_{L^n(\mathcal{U})}[\widetilde{q}, \Phi(y)] \leqslant \int_{\mathcal{U}} \varkappa(s) ds,$$
(9)

где функции $\widetilde{q} \in L^n[a,b]$ и $y \in \widetilde{C}^n[a,b]$ удовлетворяют равенству (8).

Т е о р е м а 2. Пусть для функции $y \in \widetilde{C}^n[a,b]$ имеет место представление (8) и функция $\varkappa \in L^1_+[a,b]$ для каждого измеримого множества $\mathcal{U} \subset [a,b]$ удовлетворяет неравенству (9). Далее, пусть импульсные воздействия $I_k : \mathbb{R}^n \to \mathbb{R}^n, \ k = 1,2,...,m, \ u$ отображение $\Phi : \widetilde{C}^n[a,b] \to \mathbf{S}[L^n[a,b]]$ обладают свойством ($\Gamma^{u,\varepsilon,p}; \widetilde{I}_k, k = 1,2,...,m$), где $\varepsilon \geqslant 0, \ p = |x_0 - y(a)|, \ x_0 -$ начальное условие задачи (1)-(3). Тогда для любого решения $x \in \widetilde{C}^n[a,b]$ задачи (1)-(3), удовлетворяющего для любого измеримого множества $\mathcal{U} \subset [a,b]$ неравенству (5), в котором функция $q \in L^n[a,b]$ из представления (4), а функция $v = \widetilde{q}$ из соотношения (8), при любом $t \in [a,b]$ имеет место оценка

$$|x(t) - y(t)| \le \xi(\varkappa, \varepsilon, p)(t) \tag{10}$$

и при почти всех $t \in [a,b]$ справедливо соотношение

$$|q(t) - \widetilde{q}(t)| \le \varkappa(t) + \varepsilon + (\Gamma(\xi(\varkappa, \varepsilon, p)))(t), \tag{11}$$

где $\xi(\varkappa,\varepsilon,p)\in\widetilde{C}^1_+[a,b]$ — верхнее решение задачи (7) при $u=\varkappa$ и $p=|x_0-y(a)|$. Из теорем 1, 2 вытекает

Т е о р е м а 3. Пусть для функции $y \in \widetilde{C}^n[a,b]$ имеет место представление (8) и функция $\varkappa \in L^1_+[a,b]$ для каждого измеримого множества $\mathcal{U} \subset [a,b]$ удовлетворяет неравенству (9). Далее, пусть импульсные воздействия $I_k : \mathbb{R}^n \to \mathbb{R}^n, \ k = 1,2,...,m, \ u$ отображение $\Phi : \widetilde{C}^n[a,b] \to \mathbf{S}(L^n[a,b])$ обладают свойством ($\Gamma^{\varkappa,\varepsilon,p}; \widetilde{I}_k, k = 1,2,...,m$), где $\varepsilon \geqslant 0, \ p = |x_0 - y(a)|, \ x_0 -$ начальное условие задачи (1)-(3) и множество всех локальных решений задачи (1)-(3) априорно ограничено. Тогда при $\varepsilon > 0$ существует решение $x \in \widetilde{C}^n[a,b]$ задачи (1)-(3), для которого при всех $t \in [a,b]$ справедлива оценка (10) и при почти всех $t \in [a,b]$ выполняется соотношение (11).

Eсли $\Phi: \widetilde{C}^n[a,b] \to \Omega(\mathbf{S}(L^n[a,b])),$ то утверждение справедливо и при $\varepsilon=0$.

Будем говорить, что функция $y \in C^n[a,b]$, имеющая представление (8), в котором $y(a) = x_0$, является квазирешением задачи (1) – (3), если найдется такая последовательность $x_i \in \widetilde{C}^n[a,b], i=1,2,...$, что для каждой функции $x_i, i=1,2,...$, найдется функция $q_i \in \Phi(y)$, для которой при любом $t \in [a,b]$ имеет место равенство

$$x_i(t) = \int_{a}^{t} q_i(s)ds + x_0 + \sum_{k=1}^{m} \chi_{[t_k, b]}(t)\Delta x_i(t_k),$$

где $\Delta x_i(t_k)$ удовлетворяет равенству (2), и $x_i \to y$ в пространстве $\widetilde{C}^n[a,b]$. Пусть $\mathcal{H}(x_0)$ — множество всех квазирешений задачи (1) – (3).

Рассмотрим задачу

$$\dot{x} \in \overline{\text{co}}\,\Phi(x), \quad \Delta x(t_k) = I_k(x(t_k)), \quad k = 1, 2, ..., m, \quad x(a) = x_0. \tag{12}$$

Пусть $H_{\rm co}(x_0,\tau)$ — множество всех решений задачи (12) на отрезке $[a,\tau]$ ($\tau \in (a,b]$).

T е о р е м а 4. Справедливо равенство $\mathcal{H}(x_0) = H_{co}(x_0, b)$.

Будем говорить, что импульсные воздействия $I_k: \mathbb{R}^n \to \mathbb{R}^n, \ k=1,2,...,m,$ и отображение $\Phi: \widetilde{C}^n[a,b] \to \mathbf{S}(L^n[a,b])$ обладают свойством B, если выполняется свойство $(\Gamma^{0,0,0}; \widetilde{I}_k, k=1,2,...,m),$ а задача $\dot{y}=\Gamma(y), \ y(a)=0$ на каждом отрезке $[a,\tau]$ $(\tau\in(a,b])$ имеет только нулевое решение.

Т е о р е м а 5. Пусть множество всех локальных решений задачи (1)-(3) априорно ограничено. Далее, пусть импульсные воздействия $I_k: \mathbb{R}^n \to \mathbb{R}^n, \ k=1,2,...,m, \ u$ отображение $\Phi: \widetilde{C}^n[a,b] \to \mathbf{S}(L^n[a,b])$ обладают свойством В. Тогда $H(x_0,b) \neq \varnothing$ и справедливо равенство

$$\overline{H(x_0, b)} = H_{\text{co}}(x_0, b), \tag{13}$$

где $\overline{H(x_0,b)}$ — замыкание множества $H(x_0,b)$ в пространстве $\widetilde{C}^n[a,b].$

Таким образом теорема 5 дает достаточные условия выполнения принципа плотности (см. [4]) для задачи (1)-(3). Равенство (13) можно усилить следующим образом.

Рассмотрим задачу

$$\dot{x} \in \overline{\text{ext}}(\overline{\text{co}}\,\Phi(x)), \quad \Delta x(t_k) = I_k(x(t_k)), \quad k = 1, 2, ..., m, \quad x(a) = x_0.$$
 (14)

Пусть $H_{\text{ext}}(x_0, \tau)$ — множество всех решений задачи (14) на отрезке $[a, \tau]$ ($\tau \in (a, b]$).

Т е о р е м а 6. Пусть выполнены условия теоремы 5. Тогда $H_{\rm ext}(x_0,b) \neq \varnothing$ и справедливо равенство

$$\overline{H_{\rm ext}(x_0,b)} = \overline{H(x_0,b)} = H_{\rm co}(x_0,b),$$

где $\overline{H_{\mathrm{ext}}(x_0,b)}, \overline{H(x_0,b)}$ — замыкание множеств $H_{\mathrm{ext}}(x_0,b), H(x_0,b)$ в пространстве $\widetilde{C}^n[a,b],$ соответственно.

Таким образом, для задачи (1)-(3) выполняется не только принцип плотности, но и бэнг-бэнг принцип.

ЛИТЕРАТУРА

- 1. *Самойленко А.М.*, *Перестюк Н.А.* Дифференциальные уравнения с импульсными воздействиями. М.: Высшая школа, 1987.
- 2. Завалищин С.Т., Сесекин А.Н. Импульсные процессы. Модели и приложения. М.: Наука, 1991.
- 3. *Азбелев Н.В., Максимов В.П., Рахматуллина Л.Ф.* Элементы теории функционально-дифференциальных уравнений. М.: Высшая школа, 1987.
- 4. Булгаков А.И., Беляева О.П., Григоренко А.А. К теории возмущенных включений и ее приложения // Матем. сб. 2005. Т. 196, № 10. С. 21–78.

Булгаков Александр Иванович Тамбовский государственный ун-т Россия, Тамбов e-mail: aib@tsu.tmb.ru

Филиппова Ольга Викторовна Тамбовский государственный ун-т Россия, Тамбов e-mail: aib@tsu.tmb.ru Коробко Анатолий Иванович Тамбовский государственный ун-т Россия, Тамбов e-mail: prof13@yandex.ru

Поступила в редакцию 10 мая 2007 г.

ОБОБЩЕННЫЕ ПРИБЛИЖЕННЫЕ РЕШЕНИЯ ФУНКЦИОНАЛЬНО-ДИФФЕРЕНЦИАЛЬНОГО ВКЛЮЧЕНИЯ 1

© А.И. Булгаков, А.Н. Мачина

Для формулировки основных результатов приведем некоторые обозначения и определения. Пусть \mathcal{P} — некоторая система подмножеств пространства X. Обозначим через $\Omega(\mathcal{P})$ множество всех непустых выпуклых подмножеств пространства X, принадлежащих системе \mathcal{P} .

Пусть $\Phi \subset L_1^n[a,b]$. Будем говорить, что множество Φ выпукло по переключению (разложимо), если для любых $x,y \in \Phi$ и любого измеримого множества $\mathcal{U} \subset [a,b]$ выполняется включение $\chi(\mathcal{U})x + \chi([a,b] \setminus \mathcal{U})y \in \Phi$, где $\chi(\cdot)$ — характеристическая функция соответствующего множества. Обозначим через $\Pi[L_1^n[a,b]]$ ($Q[L_1^n[a,b]]$) множество всех непустых ограниченных замкнутых выпуклых по переключению (непустых замкнутых ограниченных суммируемыми функциями) подмножеств пространства $L_1^n[a,b]$.

Пусть $F:[a,b] \to \text{comp}[R^n]$ измеримое отображение. Обозначим $S(F) = \{y \in L^n[a,b]: y(t) \in F(t)$ при п.в. $t \in [a,b]\}$.

 $^{^1}$ Работа выполнена при поддержке РФФИ (проект № 07-01-00305), темплана № 1.6.07 и Государственного образовательного фонда Норвегии.